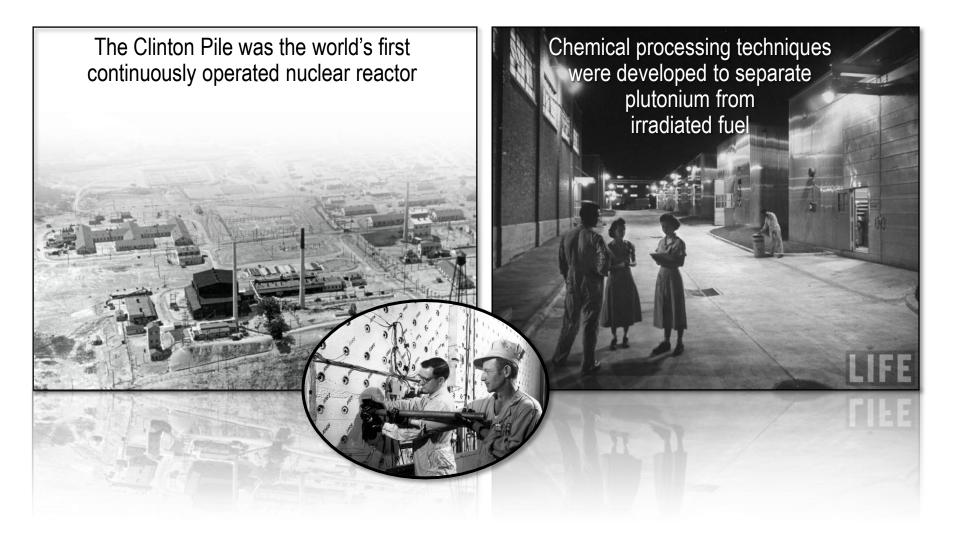

Udvalget for Forskning, Innovation og Videregående Uddannelser 2011-12 FIV Alm.del Bilag 157 Offentligt

Erfaringer fra SNS Oak Ridge

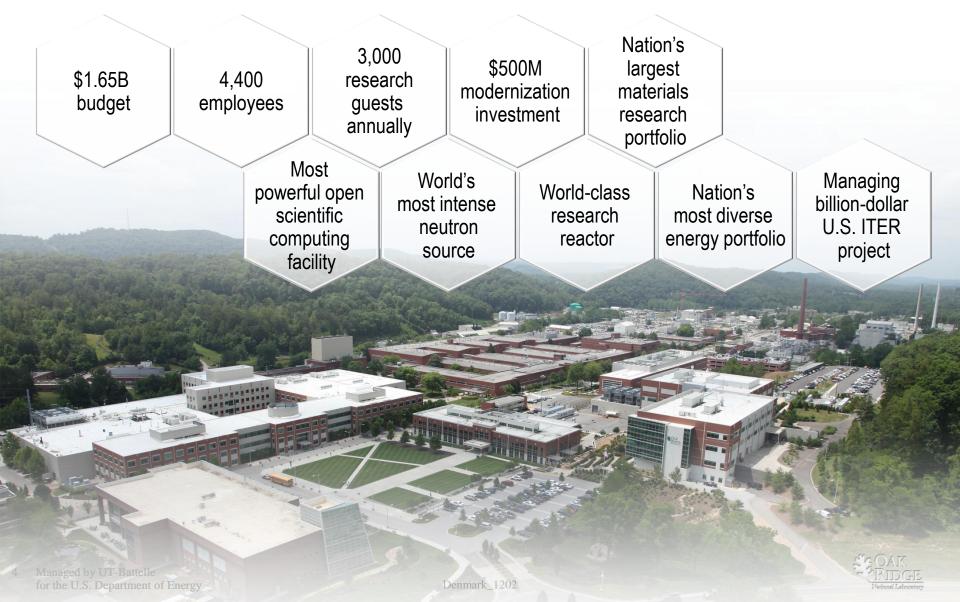
Presented to Konferencen: Verdens bedste mikroskop (ESS) En mulighed for udvikling og innovation

Ian Anderson Oak Ridge National Laboratory

Copenhagen, Denmark February 24, 2012



Outline


- Overview of Oak Ridge National Laboratory
- How ORNL engages with Industry and the local community
- The Spallation Neutron Source a learning opportunity for ESS
- Developing the science and engineering work force of the future

Oak Ridge National Laboratory evolved from the Manhattan Project

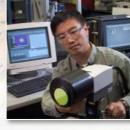
Today, ORNL is DOE's largest science and energy laboratory

Our distinctive facilities bring thousands of researchers to ORNL each year

Spallation Neutron Source

> Center for Nanophase Materials Sciences

BioEnergy Science Center


Building Technologies Research and Integration Center

Oak Ridge Leadership Computing Facility

High Flux Isotope Reactor

High Temperature Materials Laboratory

National Transportation Research Center

ORNL is a discriminator in recruiting industry to East Tennessee

Talent and facilities provide a unique advantage

- Volkswagen Group of America
- Wacker Chemie
- Hemlock
- Confluence Solar

Active partner in regional economic development

- Center for Entrepreneurial Growth
- Oak Ridge Science and Technology Park

Working with industry to commercialize our innovations

- AquaSentinel: SecureWaters
- LED North America
- NellOne Therapeutics

Finding new ways to work with industry

- User facilities
- Agreements to Commercialize
 Technology
- Collaborative research
- Sponsored research
- Technology licensing and commercialization
 - Start-up companies
 - Established firms

Example 1: Using partnerships to improve transportation sustainability

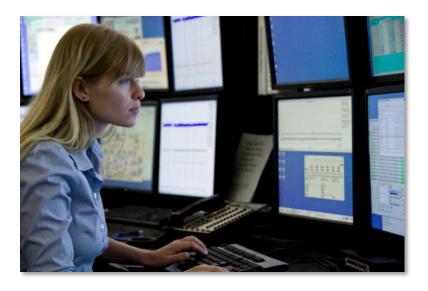
- Battery development R&D with Nissan
- Building solar electric vehicle (EV) charging stations with EPRI
- Deploying EVs and charging infrastructure with ECOtality
 - Building solar-assisted and conventional charging stations on ORNL campus
 - Adding Nissan Leaf EVs to fleet
 - Collecting and analyzing data

Example 2: BioEnergy Science Center

A multi-institutional, DOE-funded center performing basic and applied science dedicated to improving yields of biofuels from cellulosic biomass

Oak Ridge Samuel Roberts Noble Foundation **BESC headquarters at ORNL** National Laboratory National Renewable University of Georgia Energy Laboratory University of Tennessee **Brookhaven National Laboratory** Dartmouth College **Cornell University** West Virginia University University of Minnesota Georgia Institute Washington State University of Technology University of California–Riverside ArborGen, LLC North Carolina State University Ceres, Inc. Virginia Polytechnic Institute Mascoma Corporation University of California–Los Angeles **BESC** outputs 347 publications 88 invention disclosures 322 personnel 28 patent applications across 19 U.S. Institutions 14 licenses/options

Example 3: Applying petascale computing to accelerate industrial solutions


General Motors	BMI Corporation	Boeing
 Thermoelectric materials for higher fuel efficiency Atomistic determination of PbTe-AgSbTe₂ nanocomposites and growth mechanism explains low thermal conductivity DFT predictions of Ag atom interstitial position confirmed by high-resolution TEM Using improved insight to develop new material 	 Retrofit parts for improved fuel efficiency and CO₂ emissions for Class 8 long haul trucks Simulations enable design of retrofit parts, reducing fuel consumption by up to 3,700 gal and CO₂ by up to 41 tons per truck per year 7–12% improvement in fuel efficiency exceeds regulatory requirement of 5% for trucks operating in California 	 Development and correlation of computational tools for transport airplanes Reduced validation time to transition newer technology (CFD) from research to airplane design and development Demonstrated and improved correlations between CFD and wind tunnel test data
Actual Actual Simulated Nanoprecipitates in single crystal (AgSbTe ₂)-(PbTe) ₁₈		

Today's most powerful neutron source: Spallation Neutron Source

- Designed and constructed by a partnership of 6 national laboratories
- Completed in April 2006, on scope, schedule, and budget
- Total procurement: \$1,379M
 - Tennessee procurement: \$602M (43.7%)
- Offering unprecedented performance for neutron scattering research
- Delivering neutrons to hundreds of users

FY11

Unique users	889
Operating hours	5,940.9
Instruments	15
Availability	92%

The industrial neutron user community is growing

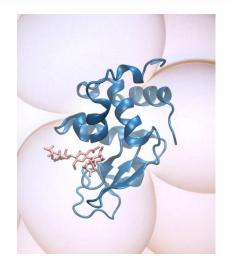
- Large and small companies are taking advantage of the unique power of neutrons
 - Characterizing large industrial components
 - Assessing wear and tear resulting from internal stresses
 - Developing advanced materials for energy applications
 - Understanding, and mimicking, biological molecules for energy and health
- Most research is nonproprietary

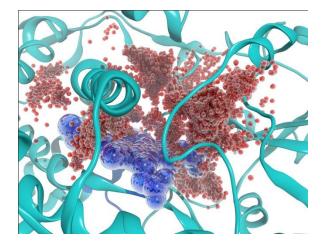
12 Managed by UT-Battelle for the U.S. Department of Energ

Denmark_1202

Neutron scattering is providing insights for energy solutions

- High-temperature superconductors
- Environmentally friendly catalysts
- Biofuels and bioproducts from lignocellulosic biomass
- Thermoelectric materials
- Batteries and Energy Storage materials
- Fuel cell membranes
- High-performance superalloys
- Lightweight materials for sustainable transportation
- Carbon capture and storage solutions

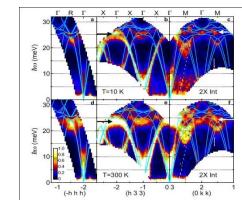

Petascale computing and neutron investigation – a formidable combination


How Proteins work

Lyzozyme (shown in blue) – a natural enzyme found in tears saliva and whites – can break down bacterial cell walls (shown in pink). Together computer simulations and neutron experiments clarify the complicated motions of proteins such as lyzozyme into three distinct classes

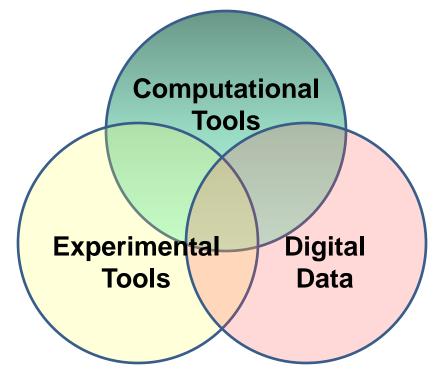
Drug Detoxification

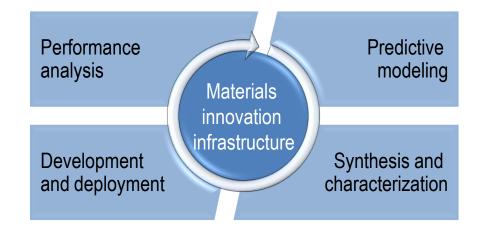
Simulations combined with inelastic neutron scattering reveal how water molecules (seen in red) move in and out of the active site (seen in blue) of a P450 enzyme. This class of enzymes is responsible fro detoxifying a large fraction of drugs taken by humans





14 Managed by UT-Battelle for the U.S. Department of Energy


Materials Innovation Infrastructure: An opportunity for the region



?

15 Managed by UT-Battelle for the U.S. Department of Energy

Denmark_1202

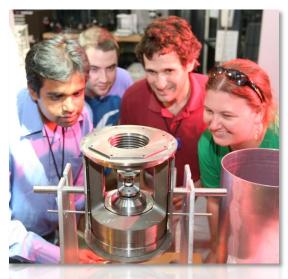
Helping to develop the next generation of scientists and engineers

- Providing educational and research experiences for students and faculty at all levels
 - Graduate education programs with an emphasis on interdisciplinary energy science and technology
 - Prestigious postdoctoral fellowships
- Investing in facilities and teachers for area schools
- Participating in regional education and workforce development efforts

University partnership and educational programs at ORNL reach thousands of students and faculty each year

Research experiences	ORNL events	Classroom outreach	New graduate program
 40+ programs serve ~1,800 students and faculty (K–12 through postgraduate) each year 	 Tours, National Lab Day, etc., bring ~5,000 K–12 and university students to ORNL each year 	 Tens of thousands of K–12 students participate each year – "Farming for Fuels" – National Geographic JASON Project, 	UT-ORNL Interdisciplinary PhD program in energy-related science and engineering
 Many programs supported by ORAU, our science education partner The matching 	Human Resources and Communications supports many of these activities	"Tectonic Fury" — SNS in the classroom	Establishing graduate education partnerships with multiple universities

- with our mission work and paid for with research funds
- Individual research groups determine their level of involvement
 - Staff commitment makes the program work



ORNL graduate research and education initiative: Our vision

Multidisciplinary

Expand student research opportunities in multidisciplinary science and engineering, leveraging ORNL staff, programs, and facilities Entrepreneurial

Incorporate entrepreneurial experiences, including opportunities to develop business plans for accelerating technology deployment Transformational

Engage students in largescale, problem-oriented programs, enabling scientific discoveries and innovative solutions to energy-related challenges

Contributing to continuing growth across the Innovation Valley

www.ornl.gov